Answer
$y=(-\frac{8}{3})x + (\frac{37}{12})$
Work Step by Step
First find the slope using the two given points. $(\frac{7}{8},\frac{3}{4})(\frac{5}{4},-\frac{1}{4})$ To find the slope use the slope formula $m = \frac{y_{2} - y_{1}}{x_{2} - x_{1}} = \frac{(-\frac{1}{4}) – (\frac{3}{4})}{(\frac{5}{4}) – (\frac{7}{8})} = -\frac{1}{\frac{3}{8}} = (-\frac{8}{3})$
Use point slope form to find the equation of the line. $y - y_{1} = m(x - x_{1})$
Note: $x_{2}$ and $y_{2}$ can also be used to solve this equation.
$y - (-\frac{1}{4}) = (-\frac{8}{3})(x + \frac{5}{4})$
$y = (-\frac{8}{3})x -(\frac{40}{12}) - (\frac{1}{4})$
Simplify: $y = (\frac{-8}{3})x + (\frac{37}{12})$