Answer
$0 = x + 2y - 5$
Work Step by Step
Given:
Point: $(9, -2)$
x-intercept: $(2a,0)$
y-intercept: $(0,a)$
$a\ne0$
First find the standard form of the equation:
Start by finding the slope:
$m = \frac{0-a}{2a-0} = -\frac{a}{2a} = -\frac{1}{2}$
Point slope form equation using the given point: $(y - y_{1} = m(x -x_{1}))$
$y - (-2) = -\frac{1}{2}(x-9)$
Convert to standard: $(y =mx +b)$
$y = -\frac{1}{2}x + \frac{9}{2} -2$
$y = -\frac{1}{2}x + \frac{5}{2}$
Now convert to General form: $(0 = Ax + Bx + C)$
$2y = -x +5$
$x +2y - 5 = 0$