Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter P - Problem Solving - Page 40: 11

Answer

(a) $$D_f= \mathbb R -\{1\}$$ $$R_f= \mathbb R - \{0\}$$ (b) $$f(f(x))=\frac{1}{1-\frac{1}{1-x}} \\$$ $$ D_{f \circ f}= \mathbb R - \{1,0\}$$ (c) $$f(f(f(x)))=\frac{1}{1-\frac{1}{1-\frac{1}{1-x}}}$$ $$D_{f \circ f \circ f}= \mathbb R - \{1,0\}$$ (d) The image of the graph of $f(f(f(x)))$ has been added. No, it is not a line since a line has no gap, but this graph has two gaps at the points $(0,0)$ and $(1,1)$.

Work Step by Step

(a) The domain of a real rational function is all real numbers, $\mathbb R$, except those vanishing its denominator. So the domain of $f$, $D_f$, is $\mathbb R - \{ \text {roots of } (1-x) \}= \mathbb R -\{1\}.$ To find the range of $f$, let $y$ be any real number which lies in the range of $f$. So there exists some $x \in D_f$ such that $y=f(x)$, that is, $$y=\frac{1}{1-x} \quad \Rightarrow \quad y-xy=1 \quad \Rightarrow \quad x= \frac{y-1}{y}.$$The right hand side of last equation can be defined for all real numbers except ${0}$. Thus, the range of $f$, $R_f$, is $\mathbb R - \{0\}$. (b)$$f(x)=\frac{1}{1-x} \quad \Rightarrow \quad f(f(x))=\frac{1}{1-\frac{1}{1-x}}$$Since $f(f(x))$ has two fractions, the domain of $f(f(x))$, $D_{f \circ f}$ is all real numbers except those vanishing either of denominators. Thus,$$D_{f \circ f}= \\ \mathbb R -\left ( \left \{ \text{roots of } \left (1-x \right ) \right \} \bigcup \left \{ \text{roots of } \left (1-\frac{1}{1-x} \right ) \right \} \right ) \\ \Rightarrow D_{f \circ f}= \mathbb R - (\{1\} \cup \{0\})=\mathbb R - \{1,0 \}. $$ For $x \in D_{f \circ f}$, we can write $f(f(x))$ as $$f(f(x))=\frac{1}{\frac{1-x-1}{1-x}}= \frac{x-1}{x}.$$ (c)$$f(x)=\frac{1}{1-x} \quad , \quad f(f(x))=\frac{1}{1-\frac{1}{1-x}} \quad \Rightarrow \quad f(f(f(x)))=\frac{1}{1-\frac{1}{1-\frac{1}{1-x}}} $$Since $f(f(f(x)))$ has three fractions, the domain of $f(f(f(x)))$, $D_{f \circ f \circ f}$ is all real numbers except those vanishing either of denominators. Thus,$$D_{f \circ f \circ f}= \\ \mathbb R -\left ( \left \{ \text{roots of } \left (1-x \right ) \right \} \bigcup \left \{ \text{roots of } \left (1-\frac{1}{1-x} \right ) \right \} \bigcup \left \{ \text{roots of } \left (1-\frac{1}{1-\frac{1}{1-x}} \right ) \right \} \right ) \\ \Rightarrow D_{f \circ f \circ f}= \mathbb R - ( \{1\} \cup \{0\} \cup \varnothing ) = \mathbb R - \{1,0 \}. $$ For $x \in D_{f \circ f \circ f}$, we can write $f(f(f(x)))$ as $$f(f(f(x)))= \frac {1}{\frac{x-(x-1)}{x}}=x.$$ (d) It has been explained in the answer.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.