Calculus 10th Edition

Published by Brooks Cole
ISBN 10: 1-28505-709-0
ISBN 13: 978-1-28505-709-5

Chapter P - Problem Solving - Page 40: 12

Answer

If $x$ is then for any $x\le 0$, then if $y$ is then for any $y\le 0$.

Work Step by Step

When it comes to equality, then the following would be a part of the conclusion: $$\begin{matrix} y+\left | y \right |=x+\left | x \right | \end{matrix}$$ When it comes to their respectable piecewise functions, then the following: $$\left\{\begin{matrix} 2y & &y>0\\ 0 & & y\le 0 \end{matrix}\right.=\left\{\begin{matrix} 2x & &x>0\\ 0 & & x\le 0 \end{matrix}\right.$$, which can be graphed as the following you see down below. Thanks to both $y>0$ and $x>0$, then the folowing would be the general equality: $$\begin{matrix} 2y=2x\\\\ \frac{2y}{2}=\frac{2x}{2}\\\\ (1)y=(1)x\\ y=x \end{matrix}$$ with the line visible on the graph as well to show the equality. Therefore, if $x$ is then for any $x\le 0$, then if $y$ is then for any $y\le 0$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.