Calculus (3rd Edition)

Published by W. H. Freeman
ISBN 10: 1464125260
ISBN 13: 978-1-46412-526-3

Chapter 1 - Precalculus Review - 1.3 The Basic Classes of Functions - Exercises - Page 23: 41

Answer

$\delta f(x)=2x+1$ $\delta f(x)=1$ $\delta f(x)=3x^2+3x+1$

Work Step by Step

We are given the function: $f(x)=x^2$ Compute $\delta f(x)$: $\delta f(x)=f(x+1)-f(x)=(x+1)^2-x^2=x^2+2x+1-x^2=2x+1$ We got: $\delta f(x)=2x+1$ We are given the function: $f(x)=x$ Compute $\delta f(x)$: $\delta f(x)=f(x+1)-f(x)=(x+1)-x=x+1-x=1$ We got: $\delta f(x)=1$ We are given the function: $f(x)=x^3$ Compute $\delta f(x)$: $\delta f(x)=f(x+1)-f(x)=(x+1)^3-x^3$ $=x^3+3x^2+3x+1-x^3$ $=3x^2+3x+1$ We got: $\delta f(x)=3x^2+3x+1$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.