Answer
See proofs
Work Step by Step
Compute $\delta (f+g)(x)$:
$\delta (f+g)(x)=\delta (f(x)+g(x))=(f(x+1)+g(x+1))-(f(x)+g(x))$
$=f(x+1)+g(x+1)-f(x)-g(x)$
$=(f(x+1)-f(x))+(g(x+1)-g(x))$
$=\delta f(x)+\delta g(x)$
We got:
$\delta (f+g)(x)=\delta f(x)+\delta g(x)$
$\delta (f+g)=\delta f+\delta g$
Compute $\delta (cf)(x)$:
$\delta (cf)(x)=(cf)(x+1)-(cf)(x)$
$=cf(x+1)-cf(x)$
$=c(f(x+1)-f(x))$
$=c\delta f(x)$
We got:
$\delta (cf)(x)=c\delta f(x)$
$\delta (cf)=c\delta (f)$