Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 1 - Functions and Limits - 1.5 The Limit of a Function - 1.5 Exercises - Page 61: 43

Answer

a) it appears in $ \lim\limits_{x \to 0}=0$ b) it appears in $ \lim\limits_{x \to 0}=-0.001$

Work Step by Step

Given: $f(x)=x^2-\frac{2^x}{1000}$ a) Let suppose $x=1,0.8,0.6,0.4,0.2,0.1,0.05$ for $x=1$ $f(1)=1^2-\frac{2^1}{1000}$ $=1-\frac{2}{1000}$ $=\frac{1000-2}{1000}$ $=\frac{998}{1000}$ $=0.998$ for $x=0.8$ $f(0.8)=(0.8)^2-\frac{2^{0.8}}{1000}$ $f(0.8)=0.638$ for $x=0.6$ $f(0.6)=(0.6)^2-\frac{2^{0.6}}{1000}$ $f(0.6)=0.358$ for $x=0.4$ $f(0.4)=(0.4)^2-\frac{2^{0.4}}{1000}$ $f(0.4)=0.158$ for $x=0.2$ $f(0.2)=(0.2)^2-\frac{2^{0.2}}{1000}$ $f(0.2)=0.038$ for $x=0.1$ $f(0.1)=(0.1)^2-\frac{2^{0.1}}{1000}$ $f(0.1)=0.008$ for $x=0.05$ $f(0.05)=(0.05)^2-\frac{2^{0.05}}{1000}$ $f(0.05)=0.001$ hence, it appears that $\lim\limits_{x \to 0}=0$ Similarly, b) Let suppose $x=0.04,0.02,0.01,0.005,0.003,0.001$ for $x=0.04$ $f(0.04)=(0.04)^2-\frac{2^{0.04}}{1000}$ $f(0.8)=0.000 $ for $x=0.02$ $f(0.02)=(0.02)^2-\frac{2^{0.02}}{1000}$ $f(0.02)=−0.000614$ for $x=0.01$ $f(0.01)=(0.01)^2-\frac{2^{0.01}}{1000}$ $f(0.01)=−0.000 907$ for $x=0.005$ $f(0.005)=(0.005)^2-\frac{2^{0.005}}{1000}$ $f(0.005)=−0.000 978$ for $x=0.003$ $f(0.003)=(0.003)^2-\frac{2^{0.003}}{1000}$ $f(0.003)=−0.000 993$ for $x=0.001$ $f(0.001)=(0.001)^2-\frac{2^{0.001}}{1000}$ $f(0.1)=−0.001 000$ Hence, it appears in $ \lim\limits_{x \to 0}=-0.001$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.