Answer
please see step-by-step
Work Step by Step
$\displaystyle \lim_{x\rightarrow a}f(x)=L$ if for every number $\epsilon > 0$ there is a number $\delta > 0$ such that the following is valid:
$($if $ 0 < |x-a| < \delta$ then $|f(x)-L| < \epsilon)$
-------------
$f(x)=x.$
Given any $\epsilon > 0$, we want to find a $\delta > 0$ such that
$0 < |x-a| < \delta\ \ \Rightarrow\ \ |x-a| < \epsilon$.
So we take $\delta=\epsilon ,$
and, by the definition,
$\displaystyle \lim_{x\rightarrow a}x=a$