Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 1 - Functions and Limits - 1.7 The Precise Definition of a Limit - 1.7 Exercises - Page 82: 30

Answer

Please see the work step by step below.

Work Step by Step

Given $\epsilon$ $\gt$ 0, we need $\delta$ $\gt$ 0 such that if 0 $\lt$ |$x$ − 2| $\lt$ $\delta$, then | ($x^{2}$ + 2$x$ − 7) − 1 | $\lt$ $\epsilon$ . | ($x^{2}$ + 2$x$ − 7) − 1 | $\lt$ $\epsilon$ ⇔ | $x^{2}$+ 2$x$ − 8 | $\lt$ $\epsilon$ ⇔ | $x$ + 4 | | $x$ − 2 | $\lt$ $\epsilon$ . Our goal is to make | $x$ − 2 | small enough so that its product with | $x$ + 4 | is less than $\epsilon$. Suppose we first require that | $x$ − 2| $\lt$ 1. Then −1 $\lt$ $x$ − 2 $\lt$ 1 ⇒ 1 $\lt$ $x$ $\lt$ 3 ⇒ 5 $\lt$ $x$ + 4 $\lt$ 7 ⇒ | $x$ + 4 | $\lt$ 7, and this gives us 7 |$x$ − 2| $\lt$ $\epsilon$ ⇒ | $x$ − 2 | $\lt$ $\epsilon$$/$7. Choose $\delta$ = min {1, $\epsilon$$/$7}. If 0 $\lt$ |$x$ − 2| $\lt$ $\delta$, then | $x$ − 2 | $\lt$ $\epsilon$$/$7 and |$x$ + 4| $\lt$ 7, so | ( $x^{2}$ + 2$x$ − 7) − 1 | = |($x$ + 4)($x$ − 2)| = |$x$ + 4| |$x$ − 2| $\lt$ 7($\epsilon$$/$7) = $\epsilon$, as desired. Thus, $\lim\limits_{x \to 2}$ ($x^{2} + 2$x − 7) = 1 by the definition of a limit.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.