Answer
True.
Work Step by Step
See sec.1-8, Th.8:
If f is continuous at b, and $\displaystyle \lim_{x\rightarrow a}g(x)=b,$
Then $\displaystyle \lim_{x\rightarrow a}f(\mathrm{g}(x))=f(\lim_{x\rightarrow a}\mathrm{g}(x))=f(b)$
------------
Let $g(x)=4x^{2}-11$.
Then, $\displaystyle \lim_{x\rightarrow 2}g(x)=16-11=5$,
$\displaystyle \lim_{x\rightarrow 2}f(\mathrm{g}(x))=f(\lim_{x\rightarrow 2}\mathrm{g}(x))=f(5)=2$
The statement is true.