Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 12 - Vectors and the Geometry of Space - Review - Concept Check - Page 881: 16

Answer

(a) Find two vectors between the three points $P,Q$ and $R$ , for example find $\vec{PQ}$ and $\vec{QR}$ and see if they are parallel that is, scalar multiples of each other. If they are parallel , then the points are on the same line , otherwise they are not. (b) Take three points such as $P,Q,R$ to find two vectors ${PQ}$ and ${QR}$. Take the cross product of ${PQ} \times {QR}$to find the normal vector $ \lt a,b,c \gt$ Let $P,Q,R$ as $(x_0,y_0,_0)$ be a point on plane equation: $a(x-x_0)+b(y-y_0)+c(z-z_0)=0$ Three points always lie in a single plane, so we only need to test the 4th point $S$ in the resulting plane equation to see the numbers work.If they do then all four points lie in the same plane.

Work Step by Step

(a) Find two vectors between the three points $P,Q$ and $R$ , for example find $\vec{PQ}$ and $\vec{QR}$ and see if they are parallel that is, scalar multiples of each other. If they are parallel , then the points are on the same line , otherwise they are not. (b) Take three points such as $P,Q,R$ to find two vectors ${PQ}$ and ${QR}$. Take the cross product of ${PQ} \times {QR}$to find the normal vector $ \lt a,b,c \gt$ Let $P,Q,R$ as $(x_0,y_0,_0)$ be a point on plane equation: $a(x-x_0)+b(y-y_0)+c(z-z_0)=0$ Three points always lie in a single plane, so we only need to test the 4th point $S$ in the resulting plane equation to see the numbers work.If they do then all four points lie in the same plane.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.