Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 12 - Vectors and the Geometry of Space - Review - Exercises - Page 882: 6

Answer

$ \lt \frac{7}{3 \sqrt 6},\frac{2}{3 \sqrt 6},\frac{-1}{3 \sqrt 6}\gt$, and $ \lt \frac{-7}{3 \sqrt 6},\frac{-2}{3 \sqrt 6},\frac{1}{3 \sqrt 6}\gt$

Work Step by Step

As we know the cross product of two vectors is orthogonal. Then we will have to calculate the cross product of the two vectors. Let $a=j+2k$ $\implies$ $a= \lt 0,1,1 \gt$ $b=i-2j+3k$ $\implies$ $b= \lt 1,-2,3 \gt$ $a \times b= \lt 0,1,1 \gt \times \lt 1,-2,3 \gt = \lt 7,2,-1 \gt$ $|a \times b| =\sqrt {49+4+1}= 3 \sqrt 6$ The unit vector is given by: $ \lt \frac{7}{3 \sqrt 6},\frac{2}{3 \sqrt 6},\frac{-1}{3 \sqrt 6}\gt$ The second vectors can be found by reversing the direction of the first. Thus, $ \lt \frac{-7}{3 \sqrt 6},\frac{-2}{3 \sqrt 6},\frac{1}{3 \sqrt 6}\gt$ Hence, $ \lt \frac{7}{3 \sqrt 6},\frac{2}{3 \sqrt 6},\frac{-1}{3 \sqrt 6}\gt$, and $ \lt \frac{-7}{3 \sqrt 6},\frac{-2}{3 \sqrt 6},\frac{1}{3 \sqrt 6}\gt$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.