Calculus Concepts: An Informal Approach to the Mathematics of Change 5th Edition

Published by Brooks Cole
ISBN 10: 1-43904-957-2
ISBN 13: 978-1-43904-957-0

Chapter 1 - Ingredients of Change: Functions and Limits - 1.1 Activities - Page 10: 26

Answer

$s(t)=60$ $then$ $t\approx0.549$ $s(t)=90$ $then$ $t\approx1.099$

Work Step by Step

Solving the equation $s(t)=y$, then we have: $s(t)=y⇔\frac{120}{1+3e^{-2t}}=y⇔\frac{1+3e^{-2t}}{120}=\frac{1}{y}⇔$ $⇔1+3e^{-2t}=\frac{120}{y}⇔3e^{-2t}=\frac{120}{y}-1⇔e^{-2t}=((\frac{120}{y}-1):3)⇔$ $⇔-2t=\ln((\frac{120}{y}-1):3)⇔t=\frac{\ln((\frac{120}{y}-1):3)}{(-2)}$ For $y=60$ $then$ $t\approx0.549$ and for $y=90$ $then$ $t\approx1.099$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.