Answer
$m(x)\approx 2.4289$
Work Step by Step
As $x$ is given, this is the input value therefore we have to calculate the output value of $m(x)$.
$m(x)=\frac{100}{1+2e^{0.3x}}$
$m(x)=\frac{100}{1+2e^{0.3(10)}}$
$m(x)=\frac{100}{1+2e^{3}}$
$m(x)\approx \frac{100}{41.171}$
$m(x)\approx 2.4289$