Answer
(a) Slope=-20
(b) Decrease in productivity is $20$ units per worker over capacity
(c) Productivity is $1700$ units per worker over capacity when no worker
Work Step by Step
$f(x)=1700 -20x$
(a)
$f(x)=1700-20x=-20x+1700=mx+c$
where m is the slope
$\Longrightarrow$
m=-20
(b)
$\delta f(x)$=f(x+$\delta x$)-f(x)
$\delta f(x)$=1700-20(x+$\delta x$)-(1700-20x)
$\delta f(x)$=1700-20x-20$\delta x$-1700+20x
$\delta f(x)$=-20$\delta x$
$\frac{\delta f(x)}{\delta x}=-20$
Decrease in productivity is $20$ units per worker over capacity
(c)At $x=0$
$f(0)=1700 -20(0)=1700$
Productivity is $1700$ units per worker over capacity when no worker