Answer
$f(x) =x^2 + 11$
Work Step by Step
$(f ∘ g)(x) = x^4+6x^2+20=(x^2+3)^2+11$
$g(x)=x^2+3$
$(f ∘ g)(x) = f(g(x)) = f(x^2+3) =(x^2+3)^2+11$
Therefore lets choose $f(x) =x^2 + 11$
$(f ∘ g)(x) = f(g(x)) =(g(x))^2 + 11=(x^2+3)^2 + 11$