Answer
The solution is
$$\frac{f(x+h)-f(x)}{h}=\frac{1}{\sqrt{x+h}+\sqrt{x}}$$
Work Step by Step
This expression becomes
$$\frac{f(x+h)-f(x)}{h}=\frac{\sqrt{x+h}-\sqrt{x}}{h}.$$
Now the rationalization gives
$$\frac{\sqrt{x+h}-\sqrt{x}}{h}\cdot\frac{\sqrt{x+h}+\sqrt{x}}{\sqrt{x+h}+\sqrt{x}}=\frac{(\sqrt{x+h}-\sqrt{x})(\sqrt{x+h}+\sqrt{x})}{h(\sqrt{x+h}+\sqrt{x})}=\frac{\sqrt{x+h}^2-\sqrt{x}^2}{h(\sqrt{x+h}+\sqrt{x})}=\frac{x+h-x}{h(\sqrt{x+h}+\sqrt{x})}=\frac{h}{h(\sqrt{x+h}+\sqrt{x})}=\frac{1}{\sqrt{x+h}+\sqrt{x}}.$$