Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 1 - Functions - 1.1 Review of Functions - 1.1 Exercises - Page 12: 89

Answer

The solution is $$\frac{f(x+h)-f(x)}{h}=\frac{1}{\sqrt{x+h}+\sqrt{x}}$$

Work Step by Step

This expression becomes $$\frac{f(x+h)-f(x)}{h}=\frac{\sqrt{x+h}-\sqrt{x}}{h}.$$ Now the rationalization gives $$\frac{\sqrt{x+h}-\sqrt{x}}{h}\cdot\frac{\sqrt{x+h}+\sqrt{x}}{\sqrt{x+h}+\sqrt{x}}=\frac{(\sqrt{x+h}-\sqrt{x})(\sqrt{x+h}+\sqrt{x})}{h(\sqrt{x+h}+\sqrt{x})}=\frac{\sqrt{x+h}^2-\sqrt{x}^2}{h(\sqrt{x+h}+\sqrt{x})}=\frac{x+h-x}{h(\sqrt{x+h}+\sqrt{x})}=\frac{h}{h(\sqrt{x+h}+\sqrt{x})}=\frac{1}{\sqrt{x+h}+\sqrt{x}}.$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.