Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 1 - Functions - 1.2 Representing Functions - 1.2 Exercises - Page 22: 38

Answer

$m(x)=\begin{cases} 1,\text{ if }0\leq x<3\\ -\dfrac{1}{3}\text{ if }x\geq 3 \end{cases}$

Work Step by Step

The graph consists of two lines. We determine the slope of each of them. For the line corresponding to $x\in[0,3)$ we choose two points and determine the slope $m_1$: $(0,1),(2,3)$ $m_1=\dfrac{3-1}{2-0}=1$ For the line corresponding to $x\in[3,\infty)$ we choose two points and determine the slope $m_2$: $(3,2),(6,1)$ $m_2=\dfrac{1-2}{6-3}=-\dfrac{1}{3}$ The slope function $m(x)$ can be written: $m(x)=\begin{cases} 1,\text{ if }0\leq x<3\\ -\dfrac{1}{3}\text{ if }x\geq 3 \end{cases}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.