Calculus with Applications (10th Edition)

Published by Pearson
ISBN 10: 0321749006
ISBN 13: 978-0-32174-900-0

Chapter 1 - Linear Functions - 1.1 Slopes and Equations of Lines - 1.1 Exercises - Page 14: 44

Answer

$(a)y=-\frac{b}{a}x+b$ (b) x-intercept $x=a$ y-intercept $y=b$ (c) Intercepts $x=a $ and $y=b$

Work Step by Step

$\frac{x}{a}+\frac{y}{b}=1$ (a) $\frac{x}{a}+\frac{y}{b}=1$ Multiplying with ab $[\frac{x}{a}+\frac{y}{b}]\times ab=1\times ab$ $bx+ay=ab$ $ay=-bx+ab$ $\frac{ay}{a}=\frac{bx+ab}{a}$ $y=-\frac{b}{a}x+b$ (b) Putting $y=0$ in $\frac{x}{a}+\frac{y}{b}=1$ $\frac{x}{a}+\frac{0}{b}=1$ $\frac{x}{a}=1$ x-intercept $x=a$ Putting $x=0$ in $\frac{x}{a}+\frac{y}{b}=1$ $\frac{0}{a}+\frac{y}{b}=1$ $0+\frac{y}{b}=1$ $\frac{y}{b}=1$ y-intercept $y=b$ (c) From the equation $y=-\frac{b}{a}x+b$ y-intercept is b At y=0 $0=-\frac{b}{a}x+b$ $-\frac{b}{a}x+b=0$ $-\frac{b}{a}x=-b$ $x=a$ is x-intercept Hence $\frac{x}{a}+\frac{y}{b}=1$ is intercept form of a line Moreover $y=0$ $\Longrightarrow$ $x=a$ is x-intercept Similarly $x=0$ $\Longrightarrow$ $y=b$ is y-intercpt S0 $\frac{x}{a}+\frac{y}{b}=1$ is in intercept form
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.