Answer
$y=\displaystyle \frac{2}{3}x-\frac{13}{3}$
Work Step by Step
$y-y_{1}=m(x-x_{1})$
is the point-slope form: slope $m$ and line passes through $(x_{1}, y_{1})$.
Solve for y to obtain the form y=mx+b (slope-intercept)
$y-(-1)=\displaystyle \frac{2}{3}(x-5)$
$ y+1=\displaystyle \frac{2}{3}(x-5)\qquad$/$\times$3 (get rid of fractions)
$3(y+1)=2(x-5)$
$3y+3=2x-10$
$ 3y=2x-13\qquad /\div 3$
$y=\displaystyle \frac{2}{3}x-\frac{13}{3}$