Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 10 - Parametric Equations and Polar Coordinates - 10.1 Exercises - Page 667: 43

Answer

$\left\{\begin{array}{l} x=2a\cot\theta\\ y=2a\sin^{2}\theta \end{array}\right.$

Work Step by Step

Point P has coordinates $(x_{P}, y_{P})=(x_{C},y_{A}).$ A lies on a circle centered at (0,a), with radius a. Name the point (0,2a) as B, the endpoint of the diameter through the origin. Name the point ($x_{A},0)$ as D, on the x axis. C has coordinates $(x_{C},y_{C})$ From the right triangle $\triangle OBC$, where $\angle \mathrm{O}\mathrm{C}\mathrm{B}=\theta$ (alternate angles), $\displaystyle \frac{x_{C}}{\text{diameter}}=\cot\theta \Rightarrow x_{C}=2a\cot\theta\quad=x_{P}$ The angle $\angle OAB$ is a right angle, (Thales' theorem) and the triangle $\triangle OAB$ a right triangle. We have $\angle AOB=90^{o}-\theta, \quad$ and $\angle OBA=\theta.$ $\displaystyle \sin\theta=\frac{|OA|}{2a}\Rightarrow|OA|=2a\sin\theta$ From the triangle $\triangle ODA,$ $ y_{A}=|OA|\sin\theta\quad$ ... substitute OA... $y_{A}=2a\sin^{2}\theta=y_{P}.$ So, $P=(2a\cot\theta, 2a\sin^{2}\theta )$ and the parametric equations are $\left\{\begin{array}{l} x=2a\cot\theta\\ y=2a\sin^{2}\theta \end{array}\right.$ To sketch, build a table of function values for x(t) and y(t), plot the points (x(t), y(t)) as t increases.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.