Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 10 - Parametric Equations and Polar Coordinates - 10.2 Exercises - Page 676: 42

Answer

$$L = (e^3 - e^{-3})$$

Work Step by Step

1. Write the formula for the length "$L$"of a curve: $$L = \int_{\alpha}^{\beta} \sqrt{(\frac{dx}{dt})^2 + (\frac{dy}{dt})^2} \space dt$$ 2. Find $\frac{dx}{dt}$ and $\frac{dy}{dt}$ $\frac{dx}{dt} = \frac{d(e^t + e^{-t})}{dt} = e^t - e^{-t}$ $\frac{dy}{dt} = \frac{d(5 - 2t)}{dt} = -2$ 3. Substitute the values into the definite integral: $L = \int_{\alpha}^{\beta} \sqrt{(e^t - e^{-t})^2 + (-2)^2} \space dt$ $L = \int_{\alpha}^{\beta} \sqrt{(e^{2t} - 2e^te^{-t} + e^{-2t}) + 4} \space dt$ ** Notice : $e^t e^{-t} = 1$ $L = \int_{\alpha}^{\beta} \sqrt{(e^{2t} - 2e^te^{-t} + e^{-2t}) + 4(e^t e^{-t})} \space dt$ $L = \int_{\alpha}^{\beta} \sqrt{(e^{2t} + 2e^te^{-t} + e^{-2t}) } \space dt$ $L = \int_{\alpha}^{\beta} \sqrt{(e^t + e^{-t})^2} \space dt$ $L = \int_{\alpha}^{\beta} {(e^t + e^{-t})} \space dt$ Since t goes from 0 to 3: $L = \int_{0}^{3} {(e^t + e^{-t})} \space dt$ $L = (e^t - e^{-t})]^3_0$ $L = (e^3 - e^{-3}) - (e^0 - e^{-0})$ $L = e^3 - e^{-3} - (1 - 1)$ $L = (e^3 - e^{-3})$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.