Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 10 - Parametric Equations and Polar Coordinates - 10.2 Exercises - Page 676: 57

Answer

$$S = \int_{0}^{\frac{\pi}{2}} 2 \pi (tcos(t)) \sqrt {1 + t^2} \space dt \approx 4.7394 $$

Work Step by Step

1. Write the formula for the area of the surface obtained by rotating a curve about the $x$-axis. $$S = \int_{\alpha}^{\beta} 2\pi y \sqrt {(\frac{dx}{dt})^2 + (\frac{dy}{dt})^2} \space dt$$ 2. Calculate: $\frac{dx}{dt}$ and $\frac{dy}{dt}$: $\frac{dx}{dt} = \frac{d(tsin(t))}{dt} = sin(t) + tcos(t)$ $\frac{dy}{dt} = \frac{d(tcos(t))}{dt} = cos(t) + t(-sin(t)) = cos(t) - tsin(t)$ 3. Substitute the given values into the formula: $S = \int_{0}^{\frac{\pi}{2}} 2\pi (tcos(t)) \sqrt {(sin(t) + tcos(t))^2 + (cos(t) - tsin(t))^2} \space dt$ $S = \int_{0}^{\frac{\pi}{2}} 2\pi (tcos(t)) \sqrt {(sin^2(t) + 2sin(t)tcos(t) + t^2cos^2(t)) + (cos^2(t) -2cos(t)tsin(t) + t^2sin^2(t))} \space dt$ $S = \int_{0}^{\frac{\pi}{2}} 2\pi (tcos(t)) \sqrt {sin^2(t) + t^2cos^2(t) + cos^2(t) + t^2sin^2(t)} \space dt$ $S = \int_{0}^{\frac{\pi}{2}} 2\pi (tcos(t)) \sqrt {1 + t^2(sin^2(t) + cos^2(t))} \space dt$ $S = \int_{0}^{\frac{\pi}{2}} 2 \pi (tcos(t)) \sqrt {1 + t^2} \space dt$ 4. Write that integral on your calculator (you can use an online one). The result is: $S \approx 4.7394$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.