Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 10 - Parametric Equations and Polar Coordinates - 10.3 Exercises - Page 687: 14

Answer

$d= \sqrt{r_{1}^{2}-2r_{1}r_{2}\cos(\theta_{1}-\theta_{2})+r_{2}^{2}}$.

Work Step by Step

The Cartesian coordinates for point $(r_{1}, \theta_{1})$ are $(r_{1}\cos\theta_{1}, r_{1}\sin\theta_{1})$ and for $(r_{2}, \theta_{2})$ are $(r_{2}\cos\theta_{2}, r_{2}\sin\theta_{2})$, We use the distance formula between two points when given in Cartesian coordinates, $d^{2}=(x_{2}-x_{1})^{2}+(y_{2}-y_{1})^{2}$ $= (r_{2}\cos\theta_{2}-r_{1}\cos\theta_{1})^{2}+(r_{2}\sin\theta_{2}-r_{1}\sin\theta_{1})^{2}$ $=r_{2}^{2}\cos^{2}\theta_{2}-2r_{1}r_{2}\cos\theta_{1}\cos\theta_{2}+r_{1}^{2}\cos^{2}\theta_{1})+(r_{2}^{2}\sin^{2}\theta_{2}-2r_{1}r_{2}\sin\theta_{1}\sin\theta_{2}+r_{1}^{2}\sin^{2}\theta_{1})$ $=r_{1}^{2}(\sin^{2}\theta_{1}+\cos^{2}\theta_{1})+r_{2}^{2}(\sin^{2}\theta_{2}+\cos^{2}\theta_{2})-2r_{1}r_{2}(\cos\theta_{1}\cos\theta_{2}+\sin\theta_{1}\sin\theta_{2})$ ... we recognize $\sin^{2}A+\cos^{2}A=1$ and $\cos(A-B)=\cos A\cos B+\sin A+\sin B...$ $d^{2}=r_{1}^{2}-2r_{1}r_{2}\cos(\theta_{1}-\theta_{2})+r_{2}^{2}$, $d= \sqrt{r_{1}^{2}-2r_{1}r_{2}\cos(\theta_{1}-\theta_{2})+r_{2}^{2}}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.