Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 10 - Parametric Equations and Polar Coordinates - 10.3 Exercises - Page 688: 59

Answer

The slope of the tangent line at that point is equal to: $$1$$

Work Step by Step

1. Write the formula for the slope of the tangent line: $$\frac{dy}{dx} = \frac{\frac{dr}{d\theta}sin(\theta) + rcos(\theta)}{\frac{dr}{d\theta}cos(\theta) - rsin(\theta)} $$ 2. Calculate $\frac{dr}{d\theta}$ and substitute the equation into the formula: $\frac{dr}{d\theta} = \frac{d(cos(2\theta))}{d\theta} = -2sin(2\theta)$ $\frac{dy}{dx} = \frac{(-2sin(2\theta))sin(\theta) + (cos(2\theta))cos(\theta)}{(-2sin(2\theta))cos(\theta) - (cos(2\theta))sin(\theta)} $ 3. Calculate the slope when $\theta = \pi/4$ $\frac{dy}{dx} = \frac{(-2sin(2\frac{\pi}4))sin(\frac{\pi}4) + (cos(2\frac{\pi}4))cos(\frac{\pi}4)}{(-2sin(2\frac{\pi}4))cos(\frac{\pi}4) - (cos(2\frac{\pi}4))sin(\frac{\pi}4)} $ $\frac{dy}{dx} = \frac{(-2(1))(\frac{\sqrt 2} 2) + (0)cos(\frac{\pi}4)}{(-2(1))\frac {\sqrt 2}2 - (0)sin(\frac{\pi}4)} = \frac{- \sqrt 2}{- \sqrt 2} = 1$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.