Multivariable Calculus, 7th Edition

Published by Brooks Cole
ISBN 10: 0-53849-787-4
ISBN 13: 978-0-53849-787-9

Chapter 10 - Parametric Equations and Polar Coordinates - 10.3 Exercises - Page 688: 61

Answer

This curve has horizontal tangent lines at these polar coordinates: $(\frac{3\sqrt 2}{2 } , \pi/4)$ and $(-\frac{3\sqrt 2}{2 } , 3\pi/4)$ And vertical tangent lines at: $(3 , 0)$ and $(0 , \pi/2)$

Work Step by Step

1. Determine $\frac{dy}{d\theta}$ and $\frac{dx}{d\theta}$. $\frac{dr}{d\theta} = \frac{d(3cos\space \theta)}{d\theta} = -3sin\space \theta$ $\frac{dy}{d\theta} = \frac{dr}{d\theta}sin \space \theta + rcos\space \theta = (-3sin \space \theta)sin \space \theta + (3cos \space \theta)cos \space \theta$ $\frac{dy}{d\theta} = 3cos^2(\theta) - 3sin^2(\theta) = 3cos(2\theta)$ $\frac{dx}{d\theta} = \frac{dr}{d\theta}cos \space \theta - rsin\space \theta = (-3sin(\theta))cos(\theta) - (3cos(\theta))sin(\theta)$ $\frac{dx}{d\theta} -6sin(\theta)cos(\theta)= -3sin(2\theta) $ 2. Identify at which points $\frac{dy}{d\theta} = 0$ and $\frac{dx}{d\theta} \neq 0$ $3cos(2\theta) = 0$ $cos(2\theta) = 0$ ** cos(t) = 0 when : $t = \frac{\pi}{2}$ and $t = \frac{3\pi}{2}$ $ (0 \lt t \lt 2\pi)$ Thus: $2\theta = \frac{\pi}{2} \longrightarrow \theta = \pi/4$ $2\theta = \frac{3\pi}{2} \longrightarrow \theta = 3\pi/4$ - Check if $\frac{dx}{d\theta} \neq 0$ for these values: $-3sin(2(\pi/4)) = -3sin\space (\pi/2) = -3(1) = -3 \neq 0$ $-3sin(2(3\pi/4)) = -3sin (3\pi/2) = -3(-1) = 3 \neq 0$ Therefore, the tangent line is horizontal when $\theta = \pi/4$ and when $\theta = 3\pi/4$ 3. Identify at which points $\frac{dx}{d\theta} = 0 \space and \space \frac{dy}{d\theta} \neq 0$ $-3sin(2\theta) = 0$ $sin(2\theta) = 0$ ** sin(t) = 0 when: $t = 0$ and $t = \pi$ $2\theta = 0 \longrightarrow \theta = 0$ $2\theta = \pi \longrightarrow \theta = \pi/2$ - Check if $\frac{dy}{d\theta} \neq 0$ for these values: $3cos(2*0) = 3(1) = 3 \neq 0 $ $3cos(2(\pi/2)) = 3cos(\pi) = 3(-1) = -3 \neq 0$ Therefore, the tangent line is vertical when $\theta = 0 \space and \space \theta = \pi/2$ 4. Find the points in polar coordinates: Horizontal: $r = 3cos(\pi/4) = 3\frac{\sqrt 2}{2} = \frac{3\sqrt 2}{2} \longrightarrow (\frac{3\sqrt 2}{2 } , \pi/4)$ $r = 3cos(3\pi/4) = 3(-\frac{\sqrt 2}{2}) = -\frac{3\sqrt 2}{2} \longrightarrow (-\frac{3\sqrt 2}{2 } , 3\pi/4)$ Vertical: $r = 3cos(0) = 3(1) = 3 \longrightarrow (3 , 0)$ $r = 3cos(\pi/2) = 3(0) = 0 \longrightarrow (0 , \pi/2)$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.