Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 1: Functions - Section 1.2 - Combining Functions; Shifting and Scaling Graphs - Exercises 1.2 - Page 21: 77

Answer

a. odd b. odd c. odd d. even e. even f. even g. even h. even i. odd

Work Step by Step

Given $ f(-x)=f(x)$ and $ g(-x)=-g(x)$, we have a. $ f(-x)g(-x)=-f(x)g(x)$: odd function b. $\frac{f(-x)}{g(-x)}=-\frac{f(x)}{g(x)}$: odd function c. $\frac{g(-x)}{f(-x)}=-\frac{g(x)}{f(x)}$: odd function d. $ f(-x)f(-x)=f(x)f(x)$: even function e. $ g(-x)g(-x)=g(x)g(x)$: even function f. $ f(g(-x))=f(-g(x))=f(g(x))$: even function g. $ g(f(-x))=g(f(x))$: even function h. $ f(f(-x))=f(f(x))$: even function i. $ g(g(-x))=g(-g(x))=-g(g(x))$: odd function
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.