University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 1 - Section 1.3 - Trigonometric Functions - Exercises - Page 27: 10

Answer

$$\sin x=\frac{12}{13}$$ $$\tan x=-\frac{12}{5}$$

Work Step by Step

$$\cos x=-\frac{5}{13}, x\in\Big[\frac{\pi}{2},\pi\Big]$$ 1) As $x\in\Big[\frac{\pi}{2},\pi\Big]$, it means angle $x$ is in the second quadrant, so $\sin x\gt0$ and $\tan x\lt0$. 2) To find $\sin x$, we employ the formula: $$\sin^2 x+\cos^2x=1$$ $$\sin^2x=1-\cos^2x=1-\Big(-\frac{5}{13}\Big)^2=1-\frac{25}{169}=\frac{144}{169}$$ $$|\sin x|=\frac{12}{13}$$ Since $\sin x\gt0$, $$\sin x=\frac{12}{13}$$ 3) To find $\tan x$, we employ the formula: $$\tan x=\frac{\sin x}{\cos x}=\frac{\frac{12}{13}}{-\frac{5}{13}}=-\frac{12}{5}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.