Answer
See the explanation
Work Step by Step
sin(-3π/2) = 1
sin(-π/3) = -$\frac{\sqrt 3}{2}$
sin(-π/6) = $\frac{-1}{2}$
sin(π/4) = $\frac{\sqrt 2}{2}$
sin(5π/6) = 1/2
cos(-3π/2) = 0
cos(-π/3) = $\frac{1}{2}$
cos(-π/6) = $\frac{\sqrt 3}{2}$
cos(π/4) = $\frac{\sqrt 2}{2}$
cos(5π/6) = -$\frac{\sqrt 3}{2}$
tan(-3π/2) = UND
tan(-π/3) = -$\sqrt 3$
tan(-π/6) = $\frac{\sqrt 3}{3}$
tan(π/4) = 1
tan(5π/6) = -$\frac{\sqrt 3}{3}$
cot(-3π/2) = 0
cot(-π/3) = -$\frac{\sqrt 3}{3}$
cot(-π/6) = -$\sqrt 3$
cot(π/4) = 1
cot(5π/6) = -$\sqrt 3$
sec(-3π/2) = UND
sec(-π/3) = 2
sec(-π/6) = 2$\frac{\sqrt 3}{3}$
sec(π/4) = $\sqrt 2$
sec(5π/6) = -2$\frac{\sqrt 3}{3}$
csc(-3π/2) = 1
csc(-π/3) = -2$\frac{\sqrt 3}{3}$
csc(-π/6) = -2
csc(π/4) = $\sqrt 2$
csc(5π/6) = 2