University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 1 - Section 1.6 - Inverse Functions and Logarithms - Exercises - Page 49: 44

Answer

(a) $\ln \sec\theta+\ln\cos\theta=0$ (b) $\ln(8x+4)-2\ln c=\ln\frac{8x+4}{c^2}$ (c) $3\ln\sqrt[3]{t^2-1}-\ln(t+1)=\ln(t-1)$

Work Step by Step

(a) $$\ln \sec\theta+\ln\cos\theta$$ - Apply Product Rule: $$\ln \sec\theta+\ln\cos\theta=\ln(\sec\theta\times\cos\theta)=\ln\Big(\frac{1}{\cos\theta}\times\cos\theta\Big)=\ln1=0$$ So, $$\ln \sec\theta+\ln\cos\theta=0$$ (b) $$\ln(8x+4)-2\ln c$$ - Apply Power Rule: $$\ln(8x+4)-2\ln c=\ln(8x+4)-\ln c^2$$ - Apply Quotient Rule: $$\ln(8x+4)-2\ln c=\ln\frac{8x+4}{c^2}$$ (c) $$3\ln\sqrt[3]{t^2-1}-\ln(t+1)$$ - First, apply Power Rule: $$3\ln\sqrt[3]{t^2-1}-\ln(t+1)=\ln(\sqrt[3]{t^2-1})^3-\ln(t+1)$$ $$3\ln\sqrt[3]{t^2-1}-\ln(t+1)=\ln(t^2-1)-\ln(t+1)$$ - Here, apply Quotient Rule: $$3\ln\sqrt[3]{t^2-1}-\ln(t+1)=\ln\frac{t^2-1}{t+1}$$ $$3\ln\sqrt[3]{t^2-1}-\ln(t+1)=\ln\frac{(t-1)(t+1)}{t+1}$$ $$3\ln\sqrt[3]{t^2-1}-\ln(t+1)=\ln(t-1)$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.