Answer
$$y=e^{2t+4}$$
Work Step by Step
To solve natural logarithm equations, keep in mind this property:
- If $\ln x = \ln a$ then $x=a$
$$\ln y=2t+4$$
- Recall the property: $\ln e^x=x$
That means $2t+4=\ln e^{2t+4}$
Therefore, $$\ln y = \ln e^{2t+4}$$
$$y=e^{2t+4}$$