University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 2 - Section 2.2 - Limit of a Function and Limit Laws - Exercises - Page 67: 59

Answer

$$\lim_{h\to0}\frac{f(x+h)-f(x)}{h}=3$$

Work Step by Step

$$f(x)=3x-4\hspace{1cm} x=2$$ So $f(x+h)=3(x+h)-4=3x+3h-4$ Therefore, $$\lim_{h\to0}\frac{f(x+h)-f(x)}{h}=\lim_{h\to0}\frac{(3x+3h-4)-(3x-4)}{h}$$ $$\lim_{h\to0}\frac{f(x+h)-f(x)}{h}=\lim_{h\to0}\frac{3x+3h-4-3x+4}{h}$$ $$\lim_{h\to0}\frac{f(x+h)-f(x)}{h}=\lim_{h\to0}\frac{3h}{h}$$ $$\lim_{h\to0}\frac{f(x+h)-f(x)}{h}=\lim_{h\to0}3$$ $$\lim_{h\to0}\frac{f(x+h)-f(x)}{h}=3$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.