University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 2 - Section 2.2 - Limit of a Function and Limit Laws - Exercises - Page 67: 60

Answer

$$\lim_{h\to0}\frac{f(x+h)-f(x)}{h}=-\frac{1}{4}$$

Work Step by Step

$$f(x)=\frac{1}{x}\hspace{1cm} x=-2$$ So $f(x+h)=\frac{1}{x+h}$ Therefore, $$\lim_{h\to0}\frac{f(x+h)-f(x)}{h}=\lim_{h\to0}\frac{\frac{1}{x+h}-\frac{1}{x}}{h}$$ $$\lim_{h\to0}\frac{f(x+h)f(x)}{h}=\lim_{h\to0}\frac{\frac{x-(x+h)}{x(x+h)}}{h}$$ $$\lim_{h\to0}\frac{f(x+h)-f(x)}{h}=\lim_{h\to0}\frac{x-x-h}{xh(x+h)}$$ $$\lim_{h\to0}\frac{f(x+h)-f(x)}{h}=\lim_{h\to0}\frac{-h}{xh(x+h)}$$ $$\lim_{h\to0}\frac{f(x+h)-f(x)}{h}=\lim_{h\to0}\frac{-1}{x(x+h)}$$ - Substitute $x=-2$ here: $$\lim_{h\to0}\frac{f(x+h)-f(x)}{h}=\lim_{h\to0}\frac{-1}{(-2)(-2+h)}$$ $$\lim_{h\to0}\frac{f(x+h)-f(x)}{h}=\frac{-1}{(-2)(-2+0)}=\frac{-1}{(-2)(-2)}$$ $$\lim_{h\to0}\frac{f(x+h)-f(x)}{h}=-\frac{1}{4}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.