University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 2 - Section 2.4 - One-Sided Limits - Exercises - Page 84: 13

Answer

$\lim_{x\to-2^+}\Big(\frac{x}{x+1}\Big)\Big(\frac{2x+5}{x^2+x}\Big)=1$

Work Step by Step

$$\lim_{x\to-2^+}\Big(\frac{x}{x+1}\Big)\Big(\frac{2x+5}{x^2+x}\Big)$$ To find one-side limit algebraically, we still apply the limit laws like for the two-side limits as normal. $$\lim_{x\to-2^+}\Big(\frac{x}{x+1}\Big)\Big(\frac{2x+5}{x^2+x}\Big)=\lim_{x\to-2^+}\Big(\frac{x}{x+1}\Big)\Big[\frac{2x+5}{x(x+1)}\Big]$$ $$\lim_{x\to-2^+}\Big(\frac{x}{x+1}\Big)\Big(\frac{2x+5}{x^2+x}\Big)=\lim_{x\to-2^+}\Big(\frac{1}{x+1}\Big)\Big(\frac{2x+5}{x+1}\Big)=\lim_{x\to-2^+}\frac{2x+5}{(x+1)^2}$$ $$\lim_{x\to-2^+}\Big(\frac{x}{x+1}\Big)\Big(\frac{2x+5}{x^2+x}\Big)=\frac{2\times(-2)+5}{(-2+1)^2}=\frac{1}{(-1)^2}=1$$ Therefore, $\lim_{x\to-2^+}\Big(\frac{x}{x+1}\Big)\Big(\frac{2x+5}{x^2+x}\Big)=1$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.