University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 2 - Section 2.4 - One-Sided Limits - Exercises - Page 84: 14

Answer

$$\lim_{x\to1^-}\Big(\frac{1}{x+1}\Big)\Big(\frac{x+6}{x}\Big)\Big(\frac{3-x}{7}\Big)=1$$

Work Step by Step

$$\lim_{x\to1^-}\Big(\frac{1}{x+1}\Big)\Big(\frac{x+6}{x}\Big)\Big(\frac{3-x}{7}\Big)$$ To find one-side limit algebraically, we still apply the limit laws like for the two-side limits as normal. $$A=\lim_{x\to1^-}\Big(\frac{1}{x+1}\Big)\Big(\frac{x+6}{x}\Big)\Big(\frac{3-x}{7}\Big)$$ $$A=\Big(\frac{1}{1+1}\Big)\Big(\frac{1+6}{1}\Big)\Big(\frac{3-1}{7}\Big)$$ $$A=\frac{1}{2}\times\frac{7}{1}\times\frac{2}{7}$$ $$A=\frac{1}{1}=1$$ Therefore, $$\lim_{x\to1^-}\Big(\frac{1}{x+1}\Big)\Big(\frac{x+6}{x}\Big)\Big(\frac{3-x}{7}\Big)=1$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.