Elementary Differential Equations and Boundary Value Problems 9th Edition

Published by Wiley
ISBN 10: 0-47038-334-8
ISBN 13: 978-0-47038-334-6

Chapter 2 - First Order Differential Equations - 2.1 Linear Equations; Method of Integrating Factors - Problems - Page 40: 28

Answer

$y_0=21/8+3e^{4/3}/4\approx 5.470$

Work Step by Step

Finding the integrating factor: $\mu(t)=\exp(\int 2/3\ dt)$ $\mu(t)=e^{2t/3}$ Finding the y-function: $y=\frac{1}{\mu(t)}[\int \mu(s)(1-s/2)ds+c]$ $y=e^{-2t/3}[-3/8\ e^{2t/3}(2t-7)+c]$ $y=-3/8\ (2t-7)+ce^{-2t/3}$ $y(0)=21/8+c=y_0\rightarrow c=y_0-21/8$ If y touches but not crosses the t-axis, 0 is a local minimum so: $y'(t_m)=0,\ y(t_m)=0\rightarrow 0+2/3\cdot0=1-t_m/2\rightarrow t_m=2$ $y'(0)=-3/8(2)+(y_0-21/8)e^{-2\cdot 2/3}=0$ $-3/4+(y_0-21/8)e^{-4/3}=0$ $y_0=e^{4/3}(21/8e^{-4/3}+3/4)$ $y_0=21/8+3e^{4/3}/4\approx 5.470$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.