Answer
Finding the integrating factor:
$\mu(t)=\exp(\int 1/4\ dt)$
$\mu(t)=e^{t/4}$
Finding the y-function:
$y=\frac{1}{\mu(t)}[\int \mu(s)(3+2\cos 2s)ds+c]$
$y=e^{-t/4}[4/65\ e^{t/4}(16\sin 2t+2\cos 2t+195)+c]$
$y=4/65\ (16\sin 2t+2\cos 2t+195)+ce^{-t/4}$
$y(0)=788/65+c=0\rightarrow c=-788/65$
a) $y=4/65\ (16\sin 2t+2\cos 2t+195-197e^{-t/4})$
At $t\rightarrow+\infty$, the exponential term goes to zero, so the value will be between a minimum when $\sin(2t)=-1, \cos(2t)=0$ and amaximum when $\sin(2t)=1, \cos(2t)=0$, i.e., $y(t\rightarrow +\infty) \rightarrow [716/65,\ 844/65]$
b) $12=4/65\ (16\sin 2t+2\cos 2t+195-197e^{-t/4})$
$16\sin 2t+2\cos 2t-197e^{-t/4}=0$
The first solution is $t=10.066$
Work Step by Step
Finding the integrating factor:
$\mu(t)=\exp(\int 1/4\ dt)$
$\mu(t)=e^{t/4}$
Finding the y-function:
$y=\frac{1}{\mu(t)}[\int \mu(s)(3+2\cos 2s)ds+c]$
$y=e^{-t/4}[4/65\ e^{t/4}(16\sin 2t+2\cos 2t+195)+c]$
$y=4/65\ (16\sin 2t+2\cos 2t+195)+ce^{-t/4}$
$y(0)=788/65+c=0\rightarrow c=-788/65$
a) $y=4/65\ (16\sin 2t+2\cos 2t+195-197e^{-t/4})$
At $t\rightarrow+\infty$, the exponential term goes to zero, so the value will be between a minimum when $\sin(2t)=-1, \cos(2t)=0$ and amaximum when $\sin(2t)=1, \cos(2t)=0$, i.e., $y(t\rightarrow +\infty) \rightarrow [716/65,\ 844/65]$
b) $12=4/65\ (16\sin 2t+2\cos 2t+195-197e^{-t/4})$
$16\sin 2t+2\cos 2t-197e^{-t/4}=0$
The first solution is $t=10.066$