Discrete Mathematics with Applications 4th Edition

Published by Cengage Learning
ISBN 10: 0-49539-132-8
ISBN 13: 978-0-49539-132-6

Chapter 3 - The Logic of Quantified Statements - Exercise Set 3.4 - Page 142: 1

Answer

(a) $x^2+2xy+y^2 $ (b) $f_i^2+2f_if_j+f_j^2 $ (c) $9u^2+30uv+25v^2 $ (d) $g^2(r)+2g(r)g(s)+g^2(s) $ (e) $log^2(t_1)+2log(t_1)log(t_2)+log^2(t_2) $

Work Step by Step

(a) $(a+b)^2=a^2+2ab+b^2\\ a=x, b=y\\ \therefore (x+y)^2=x^2+2xy+y^2 $ (b) $(a+b)^2=a^2+2ab+b^2\\ a=f_i, b=f_j\\ \therefore (f_i+f_j)^2=f_i^2+2f_if_j+f_j^2 $ (c) $(a+b)^2=a^2+2ab+b^2\\ a=3u, b=5v\\ \therefore (3u+4v)^2=(3u)^2+2(3u)(5v)+(5v)^2=9u^2+30uv+25v^2 $ (d) $(a+b)^2=a^2+2ab+b^2\\ a=g(r), b=g(s)\\ \therefore (g(r)+g(s))^2=(g(r))^2+2(g(r))(g(s))+(g(s))^2=g^2(r)+2g(r)g(s)+g^2(s) $ (e) $(a+b)^2=a^2+2ab+b^2\\ a=log(t_1), b=log(t_2)\\ \therefore (log(t_1)+log(t_2))^2=(log(t_1))^2+2(log(t_1))(log(t_2))+(log(t_2))^2=log^2(t_1)+2log(t_1)log(t_2)+log^2(t_2) $
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.