Answer
$9\sqrt[3]{3}$
Work Step by Step
Simplify each radicand to obtain
$3\sqrt[3]{8(3)}+\sqrt[3]{27(3)}
\\=3\sqrt[3]{2^3(3)}+\sqrt[3]{3^3(3)}
\\=3\cdot2\sqrt[3]{3} + 3\sqrt [3]{3}
\\=6\sqrt[3]{3} + 3\sqrt[3]{3}.$
RECALL:
The distributive property states that for any real numbers a, b, and c,
$ac + bc = (a+b)c.$
Use the distributive to obtain
$(6+3)\sqrt[3]{3}
\\=9\sqrt[3]{3}.$