Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter P - Section P.6 - Rational Expressions - Exercise Set - Page 85: 57

Answer

$\displaystyle \frac{x-1}{x+2},\ \qquad x\neq-2,-1$

Work Step by Step

Factor each denominator. $x^{2}+3x+2= (x+1)(x+2)$ ... two factors of $2$ with sum $3$ are $+1$ and $+2.$ $LCD=(x+1)(x+2)$ $\displaystyle \frac{4x^{2}+x-6}{x^{2}+3x+2}-\frac{3x}{x+1}+\frac{5}{x+2}= \displaystyle \frac{4x^{2}+x-6}{(x+1)(x+2)}-\frac{3x}{x+1}\times\frac{x+2}{x+2}+\frac{5}{x+2}\times\frac{x+1}{x+1}$ $= \displaystyle \frac{4x^{2}+x-6}{(x+1)(x+2)}- \displaystyle \frac{3x^{2}+6x}{(x+1)(x+2)}+ \displaystyle \frac{5x+5}{(x+1)(x+2)}$ $=\displaystyle \frac{4x^{2}+x-6-3x^{2}-6x+5x+5}{(x+1)(x+2)}$ $=\displaystyle \frac{x^{2}-1}{(x+1)(x+2)}\qquad$... recognize a difference of squares $=\displaystyle \frac{(x-1)(x+1)}{(x+1)(x+2)}\qquad$... We have a common factor. Reduce. $=\displaystyle \frac{x-1}{x+2},\ \qquad x\neq-2,-1$ (-1 is also excluded as $(x+1)$ was a part of the expression before reducing)
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.