Answer
$\displaystyle \frac{x-1}{x^{2}y},\qquad x\neq 0, y\neq 0$
Work Step by Step
Complex rational expressions have rational expressions in the numerator or/and in the denominator.
Here, the numerator contains $\displaystyle \frac{1}{x}$ (exclusion from the domain: $x\neq 0.\ )$
To get rid of $\displaystyle \frac{1}{x}$, we multiply both the numerator and denominator with $x.$
$\displaystyle \frac{x}{x}\times\frac{1-\frac{1}{x}}{xy}=\frac{x-1}{x(xy)},\qquad x\neq 0, y\neq 0,x\neq-y$
The expression has no common factors. Nothing to reduce.
$=\displaystyle \frac{x-1}{x^{2}y},\qquad x\neq 0, y\neq 0$