Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter P - Section P.6 - Rational Expressions - Exercise Set - Page 86: 90

Answer

The required solution is $\frac{{{a}^{2}}+{{b}^{2}}}{\left( {{a}^{2}}+ab+{{b}^{2}} \right)}$.

Work Step by Step

We have the given algebraic expression $\frac{ab}{{{a}^{2}}+ab+{{b}^{2}}}+\left( \frac{ac-ad-bc+bd}{ac-ad+bc-bd}\div \frac{{{a}^{3}}-{{b}^{3}}}{{{a}^{3}}+{{b}^{3}}} \right)$. Now, solve the bracket of the given expression: $\frac{ac-ad-bc+bd}{ac-ad+bc-bd}\div \frac{{{a}^{3}}-{{b}^{3}}}{{{a}^{3}}+{{b}^{3}}}$. And the above expression can be written as $\frac{ac-ad-bc+bd}{ac-ad+bc-bd}\div \frac{{{a}^{3}}-{{b}^{3}}}{{{a}^{3}}+{{b}^{3}}}=\frac{ac-ad-bc+bd}{ac-ad+bc-bd}\times \frac{{{a}^{3}}+{{b}^{3}}}{{{a}^{3}}-{{b}^{3}}}$. Now, factorize $ac-ad-bc+bd$ by taking out common terms: $\begin{align} & ac-ad-bc+bd=a\left( c-d \right)-b\left( c-d \right) \\ & =\left( c-d \right)\left( a-b \right) \end{align}$. Also, factorize $ac-ad+bc-bd$ by taking out common terms: $\begin{align} & ac-ad+bc-bd=a\left( c-d \right)+b\left( c-d \right) \\ & =\left( c-d \right)\left( a+b \right) \end{align}$. Further factorize ${{a}^{3}}-{{b}^{3}}$ by using the identity ${{x}^{3}}-{{y}^{3}}=\left( x-y \right)\left( {{x}^{2}}+xy+{{y}^{2}} \right)$: $\begin{align} & {{a}^{3}}-{{b}^{3}}={{\left( a \right)}^{3}}-{{\left( b \right)}^{3}} \\ & =\left( a-b \right)\left( {{a}^{2}}+ab+{{b}^{2}} \right) \end{align}$. Further factorize ${{a}^{3}}+{{b}^{3}}$ by using the identity ${{x}^{3}}+{{y}^{3}}=\left( x+y \right)\left( {{x}^{2}}-xy+{{y}^{2}} \right)$: $\begin{align} & {{a}^{3}}+{{b}^{3}}={{\left( a \right)}^{3}}+{{\left( b \right)}^{3}} \\ & =\left( a+b \right)\left( {{a}^{2}}-ab+{{b}^{2}} \right) \end{align}$. So, the bracket of the given expression gets reduced to $\begin{align} & \frac{ac-ad-bc+bd}{ac-ad+bc-bd}\div \frac{{{a}^{3}}-{{b}^{3}}}{{{a}^{3}}+{{b}^{3}}}=\frac{\left( c-d \right)\left( a-b \right)}{\left( c-d \right)\left( a+b \right)}\times \frac{\left( a+b \right)\left( {{a}^{2}}-ab+{{b}^{2}} \right)}{\left( a-b \right)\left( {{a}^{2}}+ab+{{b}^{2}} \right)} \\ & =\frac{{{a}^{2}}-ab+{{b}^{2}}}{{{a}^{2}}+ab+{{b}^{2}}} \end{align}$. And simplify the given algebraic expression: $\begin{align} & \frac{ab}{{{a}^{2}}+ab+{{b}^{2}}}+\left( \frac{ac-ad-bc+bd}{ac-ad+bc-bd}\div \frac{{{a}^{3}}-{{b}^{3}}}{{{a}^{3}}+{{b}^{3}}} \right)=\frac{ab}{\left( {{a}^{2}}+ab+{{b}^{2}} \right)}+\frac{{{a}^{2}}-ab+{{b}^{2}}}{{{a}^{2}}+ab+{{b}^{2}}} \\ & =\frac{ab+{{a}^{2}}-ab+{{b}^{2}}}{\left( {{a}^{2}}+ab+{{b}^{2}} \right)} \\ & =\frac{{{a}^{2}}+{{b}^{2}}}{\left( {{a}^{2}}+ab+{{b}^{2}} \right)} \end{align}$. Hence, $\frac{ab}{{{a}^{2}}+ab+{{b}^{2}}}+\left( \frac{ac-ad-bc+bd}{ac-ad+bc-bd}\div \frac{{{a}^{3}}-{{b}^{3}}}{{{a}^{3}}+{{b}^{3}}} \right)=$ $\frac{{{a}^{2}}+{{b}^{2}}}{\left( {{a}^{2}}+ab+{{b}^{2}} \right)}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.