Precalculus (6th Edition) Blitzer

Published by Pearson
ISBN 10: 0-13446-914-3
ISBN 13: 978-0-13446-914-0

Chapter P - Section P.6 - Rational Expressions - Exercise Set - Page 86: 94

Answer

The simplified form of the rational expression is $\frac{{{R}_{1}}{{R}_{2}}{{R}_{3}}}{{{R}_{2}}{{R}_{3}}+{{R}_{1}}{{R}_{3}}+{{R}_{1}}{{R}_{2}}}$. The combined resistance when ${{R}_{1}}=4\text{ ohms, }{{R}_{2}}=8\text{ ohms }{{R}_{3}}=12\text{ ohms}$ is $\frac{24}{11}\text{ohms}$.

Work Step by Step

Consider the expression, $\frac{1}{\frac{1}{{{R}_{1}}}+\frac{1}{{{R}_{2}}}+\frac{1}{{{R}_{3}}}}$ Therefore, $\begin{align} & \frac{1}{\frac{1}{{{R}_{1}}}+\frac{1}{{{R}_{2}}}+\frac{1}{{{R}_{3}}}}=\frac{1}{\frac{{{R}_{2}}{{R}_{3}}+{{R}_{1}}{{R}_{3}}+{{R}_{1}}{{R}_{2}}}{{{R}_{1}}{{R}_{2}}{{R}_{3}}}} \\ & =\frac{{{R}_{1}}{{R}_{2}}{{R}_{3}}}{{{R}_{2}}{{R}_{3}}+{{R}_{1}}{{R}_{3}}+{{R}_{1}}{{R}_{2}}} \end{align}$ Thus, the simplified form of the provided expression is $\frac{{{R}_{1}}{{R}_{2}}{{R}_{3}}}{{{R}_{2}}{{R}_{3}}+{{R}_{1}}{{R}_{3}}+{{R}_{1}}{{R}_{2}}}$ Now, substitute the value ${{R}_{1}}=4\text{ ohms, }{{R}_{2}}=8\text{ ohms }{{R}_{3}}=12\text{ ohms}$ in the expression, $\frac{{{R}_{1}}{{R}_{2}}{{R}_{3}}}{{{R}_{2}}{{R}_{3}}+{{R}_{1}}{{R}_{3}}+{{R}_{1}}{{R}_{2}}}$ Therefore, $\begin{align} & \frac{{{R}_{1}}{{R}_{2}}{{R}_{3}}}{{{R}_{2}}{{R}_{3}}+{{R}_{1}}{{R}_{3}}+{{R}_{1}}{{R}_{2}}}=\frac{4\cdot 8\cdot 12}{8\cdot 12+4\cdot 12+4\cdot 8} \\ & =\frac{384}{176} \\ & =\frac{24}{11} \end{align}$ The simplified form of the rational expression is $\frac{{{R}_{1}}{{R}_{2}}{{R}_{3}}}{{{R}_{2}}{{R}_{3}}+{{R}_{1}}{{R}_{3}}+{{R}_{1}}{{R}_{2}}}$. The combined resistance when ${{R}_{1}}=4\text{ ohms, }{{R}_{2}}=8\text{ ohms }{{R}_{3}}=12\text{ ohms}$ is $\frac{24}{11}\text{ohms}$.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.