An Introduction to Mathematical Statistics and Its Applications (6th Edition)

Published by Pearson
ISBN 10: 0-13411-421-3
ISBN 13: 978-0-13411-421-7

Chapter 2 Probability - 2.2 Sample Spaces and the Algebra of Sets - Questions - Page 23: 24

Answer

\[[({{A}_{1}}\cup {{A}_{2}}\cup ........\cup {{A}_{k}})\cup (A_{1}^{C}\cap A_{2}^{C}\cap ........\cap A_{k}^{C})]=S\]

Work Step by Step

Let \[{{A}_{1}},{{A}_{2}},........,{{A}_{k}}\] be any set of events defined on a sample space S and the complement of sets \[{{A}_{1}},{{A}_{2}},........,{{A}_{k}}\]are \[A_{1}^{C},A_{2}^{C},........,A_{k}^{C}\]. We have to find the value of event \[({{A}_{1}}\cup {{A}_{2}}\cup ........\cup {{A}_{k}})\cup (A_{1}^{C}\cap A_{2}^{C}\cap ........\cap A_{k}^{C})\]. According to DeMorgan’s law, the complement of an union of \[{{A}_{1}},{{A}_{2}},........,{{A}_{k}}\] is the intersection of the complements \[A_{1}^{C},A_{2}^{C},........,A_{k}^{C}\]that is, \[(A_{1}^{C}\cap A_{2}^{C}\cap ........\cap A_{k}^{C})={{({{A}_{1}}\cup {{A}_{2}}\cup ........\cup {{A}_{k}})}^{C}}\] Therefore, we can write the event \[({{A}_{1}}\cup {{A}_{2}}\cup ........\cup {{A}_{k}})\cup (A_{1}^{C}\cap A_{2}^{C}\cap ........\cap A_{k}^{C})\] as \[\begin{align} & ({{A}_{1}}\cup {{A}_{2}}\cup ........\cup {{A}_{k}})\cup (A_{1}^{C}\cap A_{2}^{C}\cap ........\cap A_{k}^{C}) \\ & =({{A}_{1}}\cup {{A}_{2}}\cup ........\cup {{A}_{k}})\cup {{({{A}_{1}}\cup {{A}_{2}}\cup ........\cup {{A}_{k}})}^{C}} \\ \end{align}\] By using the definition, for any event A, \[(A\cup {{A}^{C}})=S\] Therefore, \[\begin{align} & =({{A}_{1}}\cup {{A}_{2}}\cup ........\cup {{A}_{k}})\cup {{({{A}_{1}}\cup {{A}_{2}}\cup ........\cup {{A}_{k}})}^{C}} \\ & =S \\ \end{align}\] So, all possible outcomes in the sample space S are the outcomes of the event \[({{A}_{1}}\cup {{A}_{2}}\cup ........\cup {{A}_{k}})\cup (A_{1}^{C}\cap A_{2}^{C}\cap ........\cap A_{k}^{C})\].
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.