An Introduction to Mathematical Statistics and Its Applications (6th Edition)

Published by Pearson
ISBN 10: 0-13411-421-3
ISBN 13: 978-0-13411-421-7

Chapter 2 Probability - 2.4 Conditional Probability - Questions - Page 49: 40

Answer

$\frac{4}{7}$

Work Step by Step

Let's define the events: $A_1$: "chip transferred from urn I to urn II was white" $A_2$: "chip transferred from urn I to urn II was red" $B$: "chip selected from urn II was red" $P(A_1~|~B)=\frac{P(B~|~A_1)P(A_1)}{P(B~|~A_1)P(A_1)+P(B~|~A_2)P(A_2)}$ $P(A_1~|~B)=\frac{\frac{2}{4}\times\frac{2}{3}}{\frac{2}{4}\times\frac{2}{3}+\frac{3}{4}\times\frac{1}{3}}=\frac{\frac{1}{3}}{\frac{1}{3}+\frac{1}{4}}=\frac{\frac{1}{3}}{\frac{7}{12}}=\frac{4}{7}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.