Essentials of Statistics for the Behavioral Sciences 8th Edition

Published by Cengage Learning
ISBN 10: 1133956572
ISBN 13: 978-1-13395-657-0

Chapter 3 - Measures of Central Tendency - Problems - Page 85: 14

Answer

The new mean: $M=7$

Work Step by Step

$µ=\frac{∑X}{N}$ There are 15 scores whose mean is $8$: $8=\frac{X_1+X_2+X_3+X_4+X_5+X_6+X_7+X_8+X_9+X_{10}+X_{11}+X_{12}+X_{13}+X_{14}+X_{15}}{15}$ $X_1+X_2+X_3+X_4+X_5+X_6+X_7+X_8+X_9+X_{10}+X_{11}+X_{12}+X_{13}+X_{14}+X_{15}=8\times15=120$ Now, let's change one of the scores from $20$ to $5$. Since the position of this score in the sum above makes no difference, let's name this score as $X_{15}$ Before: $X_1+X_2+X_3+X_4+X_5+X_6+X_7+X_8+X_9+X_{10}+X_{11}+X_{12}+X_{13}+X_{14}+X_{15}=120$ $X_1+X_2+X_3+X_4+X_5+X_6+X_7+X_8+X_9+X_{10}+X_{11}+X_{12}+X_{13}+X_{14}+20=120$ $X_1+X_2+X_3+X_4+X_5+X_6+X_7+X_8+X_9+X_{10}+X_{11}+X_{12}+X_{13}+X_{14}=100$ After: $X_1+X_2+X_3+X_4+X_5+X_6+X_7+X_8+X_9+X_{10}+X_{11}+X_{12}+X_{13}+X_{14}+X_{15}=100+5=105$ Find the new mean: $M=\frac{∑X}{N}=\frac{X_1+X_2+X_3+X_4+X_5+X_6+X_7+X_8+X_9+X_{10}+X_{11}+X_{12}+X_{13}+X_{14}+X_{15}}{15}=\frac{105}{15}=7$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.