Answer
The new mean:
$M=7$
Work Step by Step
$µ=\frac{∑X}{N}$
There are 15 scores whose mean is $8$:
$8=\frac{X_1+X_2+X_3+X_4+X_5+X_6+X_7+X_8+X_9+X_{10}+X_{11}+X_{12}+X_{13}+X_{14}+X_{15}}{15}$
$X_1+X_2+X_3+X_4+X_5+X_6+X_7+X_8+X_9+X_{10}+X_{11}+X_{12}+X_{13}+X_{14}+X_{15}=8\times15=120$
Now, let's change one of the scores from $20$ to $5$. Since the position of this score in the sum above makes no difference, let's name this score as $X_{15}$
Before:
$X_1+X_2+X_3+X_4+X_5+X_6+X_7+X_8+X_9+X_{10}+X_{11}+X_{12}+X_{13}+X_{14}+X_{15}=120$
$X_1+X_2+X_3+X_4+X_5+X_6+X_7+X_8+X_9+X_{10}+X_{11}+X_{12}+X_{13}+X_{14}+20=120$
$X_1+X_2+X_3+X_4+X_5+X_6+X_7+X_8+X_9+X_{10}+X_{11}+X_{12}+X_{13}+X_{14}=100$
After:
$X_1+X_2+X_3+X_4+X_5+X_6+X_7+X_8+X_9+X_{10}+X_{11}+X_{12}+X_{13}+X_{14}+X_{15}=100+5=105$
Find the new mean:
$M=\frac{∑X}{N}=\frac{X_1+X_2+X_3+X_4+X_5+X_6+X_7+X_8+X_9+X_{10}+X_{11}+X_{12}+X_{13}+X_{14}+X_{15}}{15}=\frac{105}{15}=7$