Answer
sinB = 7/12
cosB = $\sqrt 95$/12
tanB = 7$\sqrt 95$/95
cscB = 12/7
secB = 12$\sqrt 95$/95
cotB = $\sqrt 95$/7
Work Step by Step
Pythagorean Theorem to determine unknown leg of triangle:
$a^{2} + b^{2} = c^{2}$
$7^{2} + b^{2} = 12^{2}$
$b^{2} = 144 - 49 = 95$
b = $\sqrt 95$
Evaluate each trignometric function:
sinB = o/h = 7/12
cosB = a/h = $\sqrt 95$/12
tanB = o/a = 7$\sqrt 95$/95
cscB = h/o = 12/7
secB = h/a = 12$\sqrt 95$/95
cotB = a/o = $\sqrt 95$/7