Trigonometry 7th Edition

Published by Cengage Learning
ISBN 10: 1111826854
ISBN 13: 978-1-11182-685-7

Chapter 1 - Section 1.2 - The Rectangular Coordinate System - 1.2 Problem Set - Page 26: 82

Answer

a.$(3,0)$ b. $3$ c. $0^{\circ}$

Work Step by Step

a. The terminal side of $360^{\circ}$ in standard position is on the positive $x$ axis. The terminal side is represented by the blue line in the figure. The coordinates of points on the terminal side of $360^{\circ}$ can be given by $(a,0)$, where $a$ is a positive number. Choosing $a=3$ arbitrarily, the point is $(3,0)$. b. To find the distance from the origin to $(3,0)$, we use the distance formula $$r=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}\\r=\sqrt{(3-0)^2+(0-0)^2}=\sqrt{9}=3$$ $$\therefore r = 3$$ c. To find an angle that is coterminal with $360^{\circ}$, we traverse a full revolution in the positive or negative direction. Coterminal angle = $360^{\circ}-360^{\circ}= 0^{\circ}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.