Answer
$$a^2+b^2=(3)^2+(4)^2 = 25\\c^2 = (5)^2=25$$
$\therefore a^2+b^2 = c^2 $ and the triangle is a right triangle.
Work Step by Step
To find $a,b$ and $c$, we use the distance formula
$$r=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}\\a=\sqrt{(-3-0)^2+(2-2)^2}=3\\b=\sqrt{(-3-(-3))^2+(-2-2)^2}=4\\ c=\sqrt{(-3-0)^2+(-2-2)^2}=5$$
$$a^2+b^2=(3)^2+(4)^2 = 25\\c^2 = (5)^2=25$$
$\therefore a^2+b^2 = c^2 $ and the triangle is a right triangle.