Trigonometry 7th Edition

Published by Cengage Learning
ISBN 10: 1111826854
ISBN 13: 978-1-11182-685-7

Chapter 1 - Section 1.4 - Introduction to Identities - 1.4 Problem Set - Page 40: 35

Answer

$\cos\theta$ = - $\frac{3}{5}$

Work Step by Step

We know from first Pythagorean identity that- $\cos\theta$ = ± $\sqrt (1-\sin^{2}\theta)$ As $\theta$ terminates in Q III, Therefore $\cos\theta$ will be negative- $\cos\theta$ = - $\sqrt (1-\sin^{2}\theta)$ substitute the given value of $\sin\theta$- $\cos\theta$ = - $\sqrt (1-(\frac{-4}{5})^{2})$ $\cos\theta$ = - $\sqrt (1-\frac{16}{25})$ $\cos\theta$ = - $\sqrt (\frac{25 - 16}{25})$ = $\sqrt (\frac{9}{25})$ $\cos\theta$ = - $\frac{3}{5}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.